
Optimal Program Refactoring for Size is NP-Complete

Alexandre Blanché and Théo Matricon1[0000−0002−5043−3221]

INRIA, France theo.matricon@inria.fr

Abstract. Programs are becoming increasingly complex, especially with automatic code gen-
erations systems such as large language models (LLMs). A new challenge arises in refactoring
the ever growing produced code. We transform the code as a forest of trees, and translate the
refactoring problem into a problem of minimizing the description size of the forest by replacing
a code part by call to the function. In other words, we replace all the occurrences of a subtree by
call to the function and add the function to the forest. We then prove that this formulation of
the problem as a decision problem is NP-complete. This suggests that future works should focus
on approximate methods.

1 Introduction

Programs are becoming increasingly larger. There is inherent complexity with software. The rate at
which we produce code has been ever increasing. With the advent of code generation tools such as
large language models (LLMs), the quantity of code produced is skyrocketing. A challenge with this
complexity is code complexity and duplication. The idea behind refactoring is to transform the code
in order to make it easier to understand, and reduce code duplication. It also aims at increasing code
velocity and maintainability.

In this paper we target refactoring as the problem of finding code duplicates and merging them into
a function. We see programs as trees and aim at minimizing the total size of all the trees in the forest,
which represents the code. The optimal refactor is thus the one which reduces most the description size
of the forest. There are multiple close problems of tree isomorphism [2] or largest common subtree [3,4]
but they all have one particular property in the sense that they can only find one subtree per tree
in the forest whereas this is not the case here we can find many or none. This problem is also of
particular interest to the compiler community which is interested in automated techniques for code
size reduction [6]. This interest is also shared for compression [1].

In this paper, we show that:

1. the optimal refactoring decision problem is NP-complete;
2. the weighted optimal refactoring decision problem is also NP-complete.

First, we introduce the model in section 2, then we prove the main claim of this paper in section 3
and finally discuss what this implies for refactoring in section 4.

2 Background

A program can be represented as a tree.
Programs emerge from a grammar which is based on a ranked alphabet. THis ranked alphabet

defines the primitives or letters that can be used and their arity, a primitive of arity 0 is a constant or
a variable.
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Fig. 1. Example of a tree with edges labelled representing the program (+ 1 (− 3)). Edges from nodes to
nodes are labelled by the primitive used and the argument number whereas edges from nodes to leaves are
only labelled by primitives.

In order to correctly represent the arguments and their order, instead of tagging the nodes, we tag
the edges. See Figure 1 for an example.

One could wonder whether after replacing part of a program with the new learned primitive, this
could in turn create a new embedding of the new primitive into the tree. This cannot happen, since a
new tag is created for the new learned primitive, thus there is no recursive phenomenon happening.

For a tree t, |t| denotes the number of edges in the tree.

Definition 1. A tree t embeds into another tree t′, noted t ↪→ t′, if t is isomorphic to a subgraph of t′
and the isomorphism respects the labels of the edges. See Figure 2 for an example.
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Fig. 2. On the left the tree t. On the right, the embedding of t in t′, when t′ is the tree from Figure 1.

Note that according to the definition it is possible that a tree can have multiple edge-disjoint
embeddings into another tree. We denote by #Emb the function that, given a pair of trees t and t′,
returns the maximum number of edge-disjoint embeddings of t in t′. We say that t embeds once in t′

if #Emb = 1. Even such a t can embed in multiple ways in t′, any two of these embeddings share at
least one edge.

3 Proof

Definition 2. The optimal refactoring decision problem is the following decision problem:

1. Input: a set of trees F = (ti)i≤n and s ∈ N;
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2. Output: Yes if and only if there exists a tree t such that score(t,F) ≥ s where score is defined as:

score(t,F) = |t|
∑
ti∈F

#Emb(t, ti)

Proposition 1. The optimal refactoring decision problem is in NP.

Proof. The certificate we consider is the tree t, the forest F and the embedding of t in F . The certificate
is polynomial in size, and it is easy to compute score(F , t) and check if it is greater or equal to s.

Proposition 2. The optimal refactoring decision problem is NP-hard.

Proof. We will show a reduction from the set cover decision problem to the optimal refactoring decision
problem.

The set cover decision problem is the following:

1. Input: A set U = J1;nK ⊆ N, a family (Si)1≤i≤m of subsets of U and 0 < k < m;
2. Output: Yes if and only if there exists a set A ⊆ J1;mK such that

⋃
a∈A Sa = U and |A| ≤ k.

The set cover decision problem was proven to be NP-complete by Karp [5] in 1972. Since k < m,
k can be encoded into unary, since we need more than one bit per Si. Thus, changing the encoding of
k between unary and binary does not change the complexity of the decision problem.

Now, let us introduce the gadgets that we will be using: the (Ci)1≤i≤n-gadgets (see Figure 3) and
the T -gadget (see Figure 4). For i ∈ J1;nK, Ci is a tree, with a root vertex ui to which are attached:

– a path of length l ∈ N, whose edges are labeled β;
– k − 1 edges labeled α, each of them having m incident edges labeled γ1, . . . , γm respectively;
– an edge labeled α, that we will call the “choice branch”, with incident edges labeled γa if Sa

contains i, for each a in J1;mK.

The integer l is the same among all the Ci gadgets. The edges labeled α, β and γ are called α-edges,
β-edges and γ-edges respectively.
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Fig. 3. The Ci gadget, if i belongs to only S1, S4, S6. The choice branch on the left has three γ-edges, and the
other k − 1 branches on the right have m γ-edges each.

The T -gadget is a tree, with a root vertex v, to which is attached:
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Fig. 4. The T -gadget, with m branches having one γ-edge each.

– a path of β-edges of length l;
– m α-edges, each of them having one incident edge labeled γ1, . . . , γm respectively.

We will set the target score to (l+2k)(n+1) and prove that there exists a tree t that reaches this
score if and only if there exists a solution to this instance of the set cover problem. To this end, the
value of l must satisfy some conditions, in addition to being polynomial in the size of the instance.

Condition 1: (l + 2k)n > 2(m− k)

Claim. If l satisfies Condition 1, then any tree t that reaches the target score embeds in at least one
Ci gadget.

Proof. The T -gadget has l + 2m edges, so if a tree t could cover all the edges of the T -gadget and
none of the Ci gagdets, then its score would be at most (l+2m). Let us show that this score is strictly
lower that the target score. Condition 1 states that 2(m− k) < (l+2k)n. By adding l to each side, we
deduce that l + 2m < (l + 2k)(n+ 1).

Condition 2: l + 2k > kn(m− 1)

Claim. If l satisfies Condition 2, then any tree t that reaches the target score embeds in the T -gadget.

Proof. Let us calculate an upper bound on the number of edges of the Ci. There are at most l+k(m+1)
edges per Ci and there are n of them, so a tree t could cover all the edges of the n Ci and none from
the T -gadget, then its score would be at most (l + mk + k)n. Let us show that this score is strictly
lower that the target score.

Condition 2 states that kn(m− 1) < l + 2k

⇒nmk <l + 2k + kn

⇒nk(m+ 1) <l + 2k + 2kn

⇒n(l + k(m+ 1)) <(l + 2k)(n+ 1)

Thus the maximum score is strictly lower than the target score.

Condition 3: l + 2k > 2m+nk(m+1)
n+1



Optimal Program Refactoring for Size is NP-Complete 5

Claim. If l satisfies Condition 3, then any tree t that reaches the target score contains l β-edges.

Proof. If a tree t does not contain any β-edge, then by taking all other edges from all the gadgets it
can reach a score of at most 2m+nk(m+1). Condition 3 states that 2m+nk(m+1) < (l+2k)(n+1).
So if a tree t does not contain any β-edge, it cannot reach the target score.

In addition, a tree t that contains one β-edge may as well contain all l of them, since it can only
increase its score by adding them.

Thus, a tree t that reaches the target score can embed at most once in each gadget. Since there are
n+ 1 gadgets and the size of t is at most l + 2k (the size of the T -gadget), then t must have a size of
l + 2k and embed exactly once in each Ci and in the T -gadget.

Let us now choose a value for l.

Claim. There exists a value for l that is polynomial in the size of the instance and satisfies Conditions
1, 2, 3.

Proof. Let us restate the three conditions:
Condition 1: (l + 2k)n > 2(m− k)
Condition 2: l + 2k > kn(m− 1)

Condition 3: l + 2k > 2m+nk(m+1)
n+1

Choosing l0 = mnk satisfies conditions 1 and 2, and taking an l > l0 does not break either condition,
so let us consider l = max(l0, 2m+nk(m+1)

n+1 − 2k). This value is polynomial in the size of the instance
and satisfies all three conditions.

Given an instance (U, (Si)1≤k≤m, k) of the set cover problem, let us denote L(U, (Si)1≤k≤m, k) the
instance of the optimal refactoring decision problem made up of the Ci-gadgets and the T -gadget, with
a value for l as described above and a target score of (l + 2k)(n+ 1).

Let us finally prove that our gadgets actually constitute a reduction.

Lemma 1. (U, (Si)1≤k≤m, k) is a positive instance of the set cover problem if and only if L(U, (Si)1≤k≤m, k)
is a positive instance of the optimal refactoring decision problem, i.e. if and only if there exists a tree
t that reaches the target score of (l + 2k)(n+ 1).

Proof. – → Let us assume (U, (Si)1≤k≤m, k) is a positive instance of the set cover problem: there
exists a set A ⊆ J1;mK such that

⋃
a∈A Sa = U and |A| ≤ k. Let t be a tree made up of a root

vertex u to which are attached:
• a path of β-edges of length l;
• k α-edges, each of them having one incident edge labelled respectively γa for each a ∈ A.

It is easy to see that this tree embeds once in the T -gadget. Let us show that it also embeds in all
the Ci gadgets. Let i ∈ J1;nK. Since A is a solution to the set cover instance, then there exists an
a ∈ A such that i ∈ Sa, hence the choice branch of Ci contains an edge labelled γa. So the β-edges
of t embed in the β-edges of Ci, the α-edge attached to the γa edge embeds in the choice branch
of Ci, and remaining edges of t embed in the other branches of Ci.
Thus, the score of t is (l+2k)(n+1), since its size is l+2k, and it embeds once in the n Ci gadgets
and in the T -gadget.
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– ← Let us assume that L(U, (Si)1≤k≤m, k) is a positive instance of the optimal refactoring decision
problem. Let t be a tree with a score of at least (l+ 2k)(n+ 1). By the previous claims, t embeds
once in all the Ci-gadgets and in the T -gadget, and it has l β-edges. To embed in the T -gadget,
it must have at most k α-edges, and thus at most k γ-edges. Thus, since its score of at least
(l + 2k)(n+ 1) and it embeds once in n+ 1 gadgets, it has exactly k α-edges and k γ-edges.
Because the tree t has k γ-edges, it embeds in the choice branch of each Ci gadget with a γai

edge. Thus, let A = {ai, i ∈ J1;nK}. Since t has k γ-edges, |A| = k. It is now easy to see that⋃
a∈A Sa = J1, nK, since for each i ∈ J1;nK, i ∈ Sai ⊆

⋃
a∈A Sa.

Theorem 1. The optimal refactoring decision problem is NP-Complete.

Definition 3. The weighted optimal refactoring decision problem is the following decision problem:

1. Input: a set of trees F = (ti)i≤n, w : → Q and s ∈ N
2. Output: Yes if and only if there exists a tree t such that scorew(t,F) ≥ s where scorew is defined

as:
scorew(t,F) = |t|w

∑
ti∈F

#Emb(t, ti)

and |t|w is defined as:
|t|w =

∑
e∈Edges(t)

w(e)

Theorem 2. The weighted optimal refactoring decision problem is NP-Complete.

Proof. First, we show that the problem is in NP just like for the previous problem. The certificate we
consider is the tree t, the forest F and the embedding of t in F . The certificate is polynomial in size
and it is easy to compute score(F , t) and check if it is greater or equal to k. To prove the NP-hardness,
we can reduce the problem from the optimal refactoring decision problem, with ∀t ∈ , w(t) = 1. So the
weighted optimal refactoring decision problem is NP-hard, thus NP-complete.

4 Discussion

The fact that the optimal refactoring problem is NP-complete has several implications. First, this
implies that in practice we should not aim at finding the optimal refactoring and instead find a suitable
approximation. Second, future work can reframe the refactoring problem in other fashions that can be
relevant taken into account more human factors.
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