
Scaling up Domain Agnostic Techniques
for Program Synthesis

Théo Matricon

supervised by Nathanaël Fijalkow

1 / 68

Manual Edit

Automatic Edit

2 / 68

Manual Edit

Automatic Edit

3 / 68

Manual Edit

Automatic Edit

4 / 68

Manual Edit

Automatic Edit

5 / 68

Manual Edit

Automatic Edit

6 / 68

Copyright Microsoft

7 / 68

ShapeCoder [Jones et al., 2023]

8 / 68

9 / 68

10 / 68

11 / 68

Can we assist developers with automatic code generation?

12 / 68

Can we assist developers with automatic code generation?

13 / 68

Program Synthesis

14 / 68

Deterministic tree grammars

a deterministic tree grammar G

derivation rules are of the form:
S → f S1 . . . Sk

for the tree
f

Sk. . .S1

15 / 68

Program Synthesis

Input:
a deterministic tree grammar G : the search space
a specification C that checks if a program p ∈ L(G) matches the
specification

Output:
a p ∈ L(G) such that C(p) =

16 / 68

Specifications

Logic:
∀a, b

f (a, b) ≥ a
f (a, b) ≥ b

f (a, b) ∈ {a, b}

Examples:
f (1, 5) = 5
f (2, 1) = 2

f (−3,−9) = −3

Natural language:
‘Write a function that
takes the maximum of

its two arguments.’

17 / 68

Specifications

Logic
Examples

Natural Language

18 / 68

Relevant Articles of this thesis

Enumeration
Fijalkow, Lagarde, Matricon, Ellis, Ohlmann, and Potta, Scaling Neural
Program Synthesis with Distribution-based Search, 2022, AAAI
Matricon, Fijalkow, and Lagarde, Eco Search: A No-delay Best-First
Search Algorithm for Program Synthesis, 2025, AAAI

Others
Matricon, Fijalkow, and Margueritte, WikiCoder: Learning to Write
Knowledge-Powered Code, 2023, SPIN
Matricon and Fijalkow, Runtime Filtering: Semantic Pruning for
Program Synthesis, 2025, Under Preparation (to be submitted)

Software
Matricon, Fijalkow, Lagarde, and Ellis, DeepSynth: Scaling Neural
Program Synthesis with Distribution-based Search, 2022, Journal of
Open Source Software

19 / 68

Relevant Articles of this thesis

Enumeration
Fijalkow, Lagarde, Matricon, Ellis, Ohlmann, and Potta, Scaling Neural
Program Synthesis with Distribution-based Search, 2022, AAAI
Matricon, Fijalkow, and Lagarde, Eco Search: A No-delay Best-First
Search Algorithm for Program Synthesis, 2025, AAAI

Others
Matricon, Fijalkow, and Margueritte, WikiCoder: Learning to Write
Knowledge-Powered Code, 2023, SPIN
Matricon and Fijalkow, Runtime Filtering: Semantic Pruning for
Program Synthesis, 2025, Under Preparation (to be submitted)

Software
Matricon, Fijalkow, Lagarde, and Ellis, DeepSynth: Scaling Neural
Program Synthesis with Distribution-based Search, 2022, Journal of
Open Source Software

20 / 68

Program Synthesis Frameworks

21 / 68

Enumeration
Fijalkow, Lagarde, Matricon, Ellis, Ohlmann, and Potta, Scaling
Neural Program Synthesis with Distribution-based Search, 2022,
AAAI
Matricon, Fijalkow, and Lagarde, Eco Search: A No-delay Best-First
Search Algorithm for Program Synthesis, 2025, AAAI

22 / 68

Program Synthesis

Input:
a deterministic tree grammar G : the search space
a specification C that checks if a program p ∈ L(G) matches the
specification

Output:
a p ∈ L(G) such that C(p) =

23 / 68

Basic If-Then-Else Grammar

24 / 68

Symbolic search is not enough...

Enters machine learning [Balog et al., 2017]!

25 / 68

Symbolic search is not enough...

Enters machine learning [Balog et al., 2017]!

26 / 68

Our machine learning guided pipeline
27 / 68

Prediction Example

28 / 68

Enumeration Problem

Input:
a probabilistic(weighted) deterministic tree grammar G

Goal:
enumerate all programs of G

BFS
DFS

Threshold [Menon et al., 2013]
Sort and Add [Balog et al., 2017]

...

29 / 68

Best-first Search Problem

Input:
a probabilistic(weighted) deterministic tree grammar G

Goal:
enumerate all programs of G in order of non-increasing probabilities

Delay:
time complexity between enumeration of the nth program and the next

30 / 68

31 / 68

Comparison of Best-first Search Algorithms

Time Comparison for a simple grammar with 3 non terminals

Best-first Search Algorithm Time Delay
A∗ for program synthesis [Lee et al., 2018] 3h O(log n)
HeapSearch [Fijalkow et al., 2022] 1h O(log n)
BeeSearch [Ameen and Lelis, 2023] 15min O(log n)
EcoSearch w/o buckets [Matricon et al., 2025] 11min O(log n)
EcoSearch [Matricon et al., 2025] 7min30 O(1)

32 / 68

Illustration of frontier for A∗ [Lee et al., 2018]

Top-down
O(log n) delay

33 / 68

Key Idea: takes advantage of grammar structure

Illustration of frontier for HeapSearch [Fijalkow et al., 2022]

Bottom-up: fast evaluation + observational equivalence
O(log n) delay

34 / 68

Key Idea: takes advantage of grammar structure

Illustration of frontier for HeapSearch [Fijalkow et al., 2022]

Bottom-up: fast evaluation + observational equivalence
O(log n) delay

35 / 68

Cumulative probability w.r.t. number of programs enumerated

36 / 68

DeepCoder
integer list manipulation benchmark

500 tasks with programs of depth < 5
introduced in DeepCoder [Balog et al., 2017]

simple grammar with 2 non terminals

def f(x: list[int]) -> list[int]:
y = sort(x)
return filter (is_even , y)

example = {
input =[236 , 147 , -158 , 99 , 170],
output =[-158 , 17 0, 236]

}

37 / 68

Tasks solved using different enumeration algorithms on DeepCoder
38 / 68

Key Idea: structured frontier expansion

Illustration of frontier for BeeSearch [Ameen and Lelis, 2023]

Introduce cost tuple representation
Better frontier expansion

39 / 68

Key Idea: structured frontier expansion

Illustration of frontier for BeeSearch [Ameen and Lelis, 2023]

Introduce cost tuple representation
Better frontier expansion

40 / 68

Key Idea: unification of HeapSearch and BeeSearch

Illustration of frontier for EcoSearch without buckets [Matricon et al., 2025]

O(log n) delay
Frugal frontier expansion

41 / 68

Key Idea: unification of HeapSearch and BeeSearch

Illustration of frontier for EcoSearch without buckets [Matricon et al., 2025]

O(log n) delay
Frugal frontier expansion

42 / 68

Key Issue: O(log n) delay implies a slow-down over time

43 / 68

Key Issue: O(log n) delay implies a slow-down over time

44 / 68

Key Theoretical Insight

There exists a constant M ≥ 0 such that,
for any program p and its successor p′

we have cost(p′)− cost(p) ≤ M.

M does not depend on the number of programs enumerated.

45 / 68

Key Theoretical Insight

There exists a constant M ≥ 0 such that,
for any program p and its successor p′

we have cost(p′)− cost(p) ≤ M.

M does not depend on the number of programs enumerated.

46 / 68

47 / 68

Key Idea: take advantage of our theoretical insight

Illustration of frontier for EcoSearch [Matricon et al., 2025]

O(1) delay
Integer costs

48 / 68

Key Idea: take advantage of our theoretical insight

Illustration of frontier for EcoSearch [Matricon et al., 2025]

O(1) delay
Integer costs

49 / 68

FlashFill
string manipulation benchmark

100 tasks
introduced in FlashFill [Gulwani, 2011]
simple grammar with 3 non terminals

examples = [{
input="736 miles ",
output ="736"

},
{

input="1255 miles ",
output ="1255"

},
{

input="790 miles ",
output ="790"

}
]

50 / 68

Tasks solved using different enumeration algorithms on FlashFill

51 / 68

Conclusion

From O(log n) top-down to O(log n) bottom-up
From O(log n) bottom-up to O(1) bottom-up
Faster program synthesis

But also (not mentioned)

Introduced distribution-based search framework
A "loss-optimal" sampling algorithm
Grammar splitting to parallelise the search
Better scaling with grammar complexity

52 / 68

Wikicoder
Matricon, Fijalkow, and Margueritte, WikiCoder: Learning to Write
Knowledge-Powered Code, 2023, SPIN

53 / 68

Syntactic processing cannot solve these tasks.

Syntactic Extraction

54 / 68

Syntactic processing cannot solve these tasks.

Syntactic Extraction

55 / 68

Syntactic processing cannot solve these tasks.

Syntactic Extraction

56 / 68

Semantic Processing

57 / 68

Knowledge Post-Processing

58 / 68

Idealized extract from YAGO/WikiData

59 / 68

60 / 68

61 / 68

62 / 68

63 / 68

Conclusion

Different levels of knowledge in programs
Tackled entities and syntactic extraction
Strong hypothesis on the domain

64 / 68

Conclusion
HeapSearch: first O(log n) bottom-up
EcoSearch: first O(1) and bottom-up
Speed-up: A∗: 3h EcoSearch: 7min30

Knowledge-powered programs
Different levels of complexity in knowledge-powered program synthesis
Tackled entities and syntactic extraction

65 / 68

Conclusion
But also (not mentioned)

Introduced distribution-based search framework
A "loss-optimal" sampling algorithm
Grammar splitting to parallelise the search
Improved scaling of enumeration with grammar complexity

Generate semantic equalities automatically
Prune semantic redundant programs in O(1) at runtime

66 / 68

ProgSynth
Generic Synthesis Library

10k lines of code
2.5k lines of test

Programming By Examples Specific

8k lines of code

67 / 68

Perspectives
How can we remove memory constraints of enumeration algorithms?
How can we have GPU-friendly implementations?
How can we parallelise program synthesis?

How can we combine enumerative search paradigm with LLMs?
And more generally, can we combine multiple paradigms?

68 / 68

Runtime Filtering
Matricon and Fijalkow, Runtime Filtering: Semantic Pruning for
Program Synthesis, 2025, Under Preparation

69 / 68

1 0+1 is useless: it does not use the input variable Var0;
2 Double(Halve(P)) is redundant: it is equivalent to P;
3 Add(Add(P,Q),R) and Add(P, Add(Q,R)) are equivalent
4 Add(P,Q) and Add(Q,P) are equivalent.

70 / 68

1 Var0 must be used at least once rules out the program 0+1;
2 Forbidding Double(Halve) rules out Double(Halve(P));
3 Forbidding Add(_,Add) rules out programs associating addition to

the right;
4 Choosing between Add(P,Q) and Add(Q,P) would imply ordering all

programs, which context-free grammars cannot do.

71 / 68

B =⇒ And(B,B) | Or(B,B) | Not(B) | Var0 | Var1

72 / 68

B1 =⇒ And(B1,B1) | Or(B2,B2) | Not(B3) | Var0 | Var1
B2 =⇒ Or(B2,B2) | Not(B3) | Var0 | Var1
B3 =⇒ Not(B3) | Var0 | Var1

73 / 68

1 We enumerate all programs where each variable appears at most
once, up to some fixed depth and some fixed number of variables;

2 We check for program equivalence amongst all generated programs;
3 For each equation found where one program is larger than the other

one, we add a rule to forbid the larger program;

74 / 68

The compilation of rules are performed on DBTAs.
Minimisation are performed on DBTAs.
Enumeration is performed on det-CFG and pruned by the DBTA.

75 / 68

Number of programs and respective proportions (prop.) with respect to maximum
depth in the List Programming DSL with type ‘int list → int list’.

depth no rules with rules (prop.)

3 8.77e+04 0.83
4 3.34e+16 0.51
5 9.20e+52 0.13
6 4.79e+165 0.0015
7 4.14e+510 10−9

76 / 68

Number of tasks solved with respect to cumulative time on the set of all solved
List Programming tasks

77 / 68

Conclusion

Find rules once and for all
Compile the rules
Almost-free pruning even with a smaller grammar model for
bottom-up processes

78 / 68

Illustration of the tree of leftmost derivations.

79 / 68

80 / 68

81 / 68

Tasks solved using different enumeration algorithms on DeepCoder

82 / 68

83 / 68

84 / 68

85 / 68

S. Ameen and L. H. Lelis. Program synthesis with best-first bottom-up
search. Journal of Artificial Intelligence Research, 77:1275–1310, 2023.

M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow.
Deepcoder: Learning to write programs. In International Conference on
Learning Representations, ICLR, 2017. URL
https://openreview.net/forum?id=ByldLrqlx.

N. Fijalkow, G. Lagarde, T. Matricon, K. Ellis, P. Ohlmann, and A. Potta.
Scaling neural program synthesis with distribution-based search. In
AAAI, 2022. URL https://arxiv.org/abs/2110.12485.

S. Gulwani. Automating string processing in spreadsheets using
input-output examples. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL, 2011. URL
https://doi.org/10.1145/1926385.1926423.

R. K. Jones, P. Guerrero, N. J. Mitra, and D. Ritchie. Shapecoder:
Discovering abstractions for visual programs from unstructured
primitives. ACM Transactions on Graphics (TOG), Siggraph 2023, 42
(4), 2023.

W. Lee, K. Heo, R. Alur, and M. Naik. Accelerating search-based program
synthesis using learned probabilistic models. SIGPLAN Not., 53(4):

86 / 68

https://openreview.net/forum?id=ByldLrqlx
https://arxiv.org/abs/2110.12485
https://doi.org/10.1145/1926385.1926423

436449, June 2018. ISSN 0362-1340. doi: 10.1145/3296979.3192410.
URL https://doi.org/10.1145/3296979.3192410.

T. Matricon and N. Fijalkow. Runtime filtering: Semantic pruning for
program synthesis. In Under Preparation, volume 33, 2025.

T. Matricon, N. Fijalkow, G. Lagarde, and K. Ellis. Deepsynth: Scaling
neural program synthesis with distribution-based search. Journal of
Open Source Software, 7(78):4151, 2022. doi: 10.21105/joss.04151.

T. Matricon, N. Fijalkow, and G. Margueritte. Wikicoder: Learning to
write knowledge-powered code. In G. Caltais and C. Schilling, editors,
SPIN, pages 123–140. Springer Nature Switzerland, 2023. ISBN
978-3-031-32157-3.

T. Matricon, N. Fijalkow, and G. Lagarde. Eco search: A no-delay
best-first search algorithm for program synthesis. In AAAI, 2025.

A. K. Menon, O. Tamuz, S. Gulwani, B. W. Lampson, and A. Kalai. A
machine learning framework for programming by example. In
International Conference on Machine Learning, ICML, 2013. URL
http://proceedings.mlr.press/v28/menon13.html.

87 / 68

https://doi.org/10.1145/3296979.3192410
http://proceedings.mlr.press/v28/menon13.html

	Appendix
	References

