
Scaling up Domain Agnostic Techniques
for Program Synthesis

Théo Matricon

supervised by Nathanaël Fijalkow

1 / 68



Manual Edit

Automatic Edit

2 / 68



Manual Edit

Automatic Edit

3 / 68



Manual Edit

Automatic Edit

4 / 68



Manual Edit

Automatic Edit

5 / 68



Manual Edit

Automatic Edit

6 / 68



Copyright Microsoft

7 / 68



ShapeCoder [Jones et al., 2023]
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Can we assist developers with automatic code generation?
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Program Synthesis
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Deterministic tree grammars

a deterministic tree grammar G

derivation rules are of the form:
S → f S1 . . . Sk

for the tree
f

Sk. . .S1
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Program Synthesis

Input:
a deterministic tree grammar G : the search space
a specification C that checks if a program p ∈ L(G) matches the
specification

Output:
a p ∈ L(G) such that C(p) =
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Specifications

Logic:
∀a, b

f (a, b) ≥ a
f (a, b) ≥ b

f (a, b) ∈ {a, b}

Examples:
f (1, 5) = 5
f (2, 1) = 2

f (−3,−9) = −3

Natural language:
‘Write a function that
takes the maximum of

its two arguments.’
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Program Synthesis Frameworks
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Program Synthesis

Input:
a deterministic tree grammar G : the search space
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Basic If-Then-Else Grammar
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Symbolic search is not enough...

Enters machine learning [Balog et al., 2017]!
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Our machine learning guided pipeline
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Prediction Example
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Enumeration Problem

Input:
a probabilistic(weighted) deterministic tree grammar G

Goal:
enumerate all programs of G

BFS
DFS

Threshold [Menon et al., 2013]
Sort and Add [Balog et al., 2017]

...
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Best-first Search Problem

Input:
a probabilistic(weighted) deterministic tree grammar G

Goal:
enumerate all programs of G in order of non-increasing probabilities

Delay:
time complexity between enumeration of the nth program and the next
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Comparison of Best-first Search Algorithms

Time Comparison for a simple grammar with 3 non terminals

Best-first Search Algorithm Time Delay
A∗ for program synthesis [Lee et al., 2018] 3h O(log n)
HeapSearch [Fijalkow et al., 2022] 1h O(log n)
BeeSearch [Ameen and Lelis, 2023] 15min O(log n)
EcoSearch w/o buckets [Matricon et al., 2025] 11min O(log n)
EcoSearch [Matricon et al., 2025] 7min30 O(1)
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Illustration of frontier for A∗ [Lee et al., 2018]

Top-down
O(log n) delay
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Key Idea: takes advantage of grammar structure

Illustration of frontier for HeapSearch [Fijalkow et al., 2022]

Bottom-up: fast evaluation + observational equivalence
O(log n) delay
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Cumulative probability w.r.t. number of programs enumerated
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DeepCoder
integer list manipulation benchmark

500 tasks with programs of depth < 5
introduced in DeepCoder [Balog et al., 2017]

simple grammar with 2 non terminals

def f(x: list[int]) -> list[int]:
y = sort(x)
return filter (is_even , y)

example = {
input =[236 , 147 , -158 , 99 , 170],
output =[-158 , 17 0, 236]

}
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Tasks solved using different enumeration algorithms on DeepCoder
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Key Idea: structured frontier expansion

Illustration of frontier for BeeSearch [Ameen and Lelis, 2023]

Introduce cost tuple representation
Better frontier expansion
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Key Idea: unification of HeapSearch and BeeSearch

Illustration of frontier for EcoSearch without buckets [Matricon et al., 2025]

O(log n) delay
Frugal frontier expansion
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Key Issue: O(log n) delay implies a slow-down over time
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Key Theoretical Insight

There exists a constant M ≥ 0 such that,
for any program p and its successor p′

we have cost(p′)− cost(p) ≤ M.

M does not depend on the number of programs enumerated.
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Key Idea: take advantage of our theoretical insight

Illustration of frontier for EcoSearch [Matricon et al., 2025]

O(1) delay
Integer costs
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FlashFill
string manipulation benchmark

100 tasks
introduced in FlashFill [Gulwani, 2011]
simple grammar with 3 non terminals

examples = [{
input="736 miles ",
output ="736"

},
{

input="1255 miles ",
output ="1255"

},
{

input="790 miles ",
output ="790"

}
]
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Tasks solved using different enumeration algorithms on FlashFill
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Conclusion

From O(log n) top-down to O(log n) bottom-up
From O(log n) bottom-up to O(1) bottom-up
Faster program synthesis

But also (not mentioned)

Introduced distribution-based search framework
A "loss-optimal" sampling algorithm
Grammar splitting to parallelise the search
Better scaling with grammar complexity
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Wikicoder
Matricon, Fijalkow, and Margueritte, WikiCoder: Learning to Write
Knowledge-Powered Code, 2023, SPIN
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Syntactic processing cannot solve these tasks.

Syntactic Extraction
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Semantic Processing
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Knowledge Post-Processing
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Idealized extract from YAGO/WikiData
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Conclusion

Different levels of knowledge in programs
Tackled entities and syntactic extraction
Strong hypothesis on the domain

64 / 68



Conclusion
HeapSearch: first O(log n) bottom-up
EcoSearch: first O(1) and bottom-up
Speed-up: A∗: 3h EcoSearch: 7min30

Knowledge-powered programs
Different levels of complexity in knowledge-powered program synthesis
Tackled entities and syntactic extraction
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Conclusion
But also (not mentioned)

Introduced distribution-based search framework
A "loss-optimal" sampling algorithm
Grammar splitting to parallelise the search
Improved scaling of enumeration with grammar complexity

Generate semantic equalities automatically
Prune semantic redundant programs in O(1) at runtime
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ProgSynth
Generic Synthesis Library

10k lines of code
2.5k lines of test

Programming By Examples Specific

8k lines of code
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Perspectives
How can we remove memory constraints of enumeration algorithms?
How can we have GPU-friendly implementations?
How can we parallelise program synthesis?

How can we combine enumerative search paradigm with LLMs?
And more generally, can we combine multiple paradigms?
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Runtime Filtering
Matricon and Fijalkow, Runtime Filtering: Semantic Pruning for
Program Synthesis, 2025, Under Preparation
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1 0+1 is useless: it does not use the input variable Var0;
2 Double(Halve(P)) is redundant: it is equivalent to P;
3 Add(Add(P,Q),R) and Add(P, Add(Q,R)) are equivalent
4 Add(P,Q) and Add(Q,P) are equivalent.
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1 Var0 must be used at least once rules out the program 0+1;
2 Forbidding Double(Halve) rules out Double(Halve(P));
3 Forbidding Add(_,Add) rules out programs associating addition to

the right;
4 Choosing between Add(P,Q) and Add(Q,P) would imply ordering all

programs, which context-free grammars cannot do.
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B =⇒ And(B,B) | Or(B,B) | Not(B) | Var0 | Var1
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B1 =⇒ And(B1,B1) | Or(B2,B2) | Not(B3) | Var0 | Var1
B2 =⇒ Or(B2,B2) | Not(B3) | Var0 | Var1
B3 =⇒ Not(B3) | Var0 | Var1
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1 We enumerate all programs where each variable appears at most
once, up to some fixed depth and some fixed number of variables;

2 We check for program equivalence amongst all generated programs;
3 For each equation found where one program is larger than the other

one, we add a rule to forbid the larger program;
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The compilation of rules are performed on DBTAs.
Minimisation are performed on DBTAs.
Enumeration is performed on det-CFG and pruned by the DBTA.
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Number of programs and respective proportions (prop.) with respect to maximum
depth in the List Programming DSL with type ‘int list → int list’.

depth no rules with rules (prop.)

3 8.77e+04 0.83
4 3.34e+16 0.51
5 9.20e+52 0.13
6 4.79e+165 0.0015
7 4.14e+510 10−9
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Number of tasks solved with respect to cumulative time on the set of all solved
List Programming tasks
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Conclusion

Find rules once and for all
Compile the rules
Almost-free pruning even with a smaller grammar model for
bottom-up processes
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Illustration of the tree of leftmost derivations.
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Tasks solved using different enumeration algorithms on DeepCoder
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