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Our contributions:
A theoretical framework called distribution-based search for evaluating
and comparing search algorithms in the context of machine-learned
predictions.

Two new search algorithms: Heap Search, an enumerative method,
and SQRT Sampling, a probabilistic method. We prove a number
of theoretical results about them, in particular that they are both loss
optimal.
A method for running any search algorithm across parallel computing
environments.
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Examples:

f([1, 2, 3]) = [4, 6, 1]
f([]) = []
f([10, 3, 4]) = [6, 1, 0]
f([47, 0, 9, 34]) = [1, 3, 2, 6]

What is f ?

f : list(int) → list(int)
f var0 = map (λx. mod x 7) (map (+ 3) var0)
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Pipeline for neural predictions for syntax guided program synthesis.
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NN predicts a PCFG → induces a distribution D over programs

We look for a program P that meets IO specification
The predictions are given by the prior distribution D

Goal: find P as quickly as possible
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Evaluation criterion for an algorithm A given D?

loss of (A, D) = the expectation of the number of tries to find the
program sampled from the prior distribution

A∗ is ’loss optimal’ if it generates each program exactly once and in non
increasing order of probability.

Trade-off: Quality vs Quantity
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Theorem
The Heap Search algorithm is loss optimal: it enumerates every
program exactly once and in non-increasing order of probabilities.

It uses a data structure made of heaps and hashing tables to efficiently
enumerate programs.
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Sampling Algorithms: may generate a program mutiple times but do not
require memory.

Theorem
The SQRT Sampling algorithm is loss optimal among sampling
algorithms.

SQRT Sampling samples program from the square root distribution of
the prior distribution D.
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The grammar splitter: a balanced partition with imbalance α = .3
.25 = 1.2.

N. Fijalkow, G. Lagarde, T. Matricon et al. Scaling Neural Program Synthesis with Distribution-based Search 12



Experiments
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Cumulative probability against number
of program output

Cumulative probability against time in
log-scale
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Comparing all search algorithms on the DreamCoder reduced dataset with
machine-learned PCFGs
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Parallel implementations of Heap Search and SQRT Sampling using the
grammar splitter
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Code: github.com/nathanael-fijalkow/DeepSynth
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